## **Motion Correction in Digital** Subtraction Angiography using **Generative Adversarial Networks: An** Implementation and Evaluation of the **Gradient-Consistency Loss Function**

Presenter: Brendan T. Crabb Authors: F. Hamrick; P.S. Eiswirth; F. Noo; G. C. Fine. Affiliation: University of Utah School of Medicine, Department of Radiology, Salt Lake City, UT

### INTRODUCTION

- Digital subtraction angiography (DSA) is a commonly used method for the visualization of vasculature throughout the human body; however, artifacts due to patient motion limit this technique's diagnostic utility.
- Generative adversarial networks (GAN) represent a viable solution to the significant problem of motion artifacts in DSA but require additional diagnostic improvements prior to clinical implementation.

### **OBJECTIVES**

• To investigated the use of a gradient-consistency (GC) loss function to enhance the anatomical accuracy and diagnostic capabilities of GANs for motion correction in DSA

### METHODS

- A dataset containing 29,656 cerebral DSA images with minimal artifacts due to patient motion was collected and split into training, validation, and testing datasets.
- The pix2pix GAN was trained to produce DSAs directly from the post-contrast fluoroscopic image, without the use of a pre-contrast mask.
- Training was performed with both an L1 + adversarial loss and an L1 + GC + adversarial loss.

## RESULTS

- The pix2pix GAN trained with an L1 + GC + adversarial loss had a statistically significant improvement in SSIM on the testing dataset when compared to an L1 + adversarial loss alone (SSIM 0.837 (95% CI 0.835 to 0.839) vs. 0.833 (95% CI 0.831 to 0.835), p-value 0.004).
- Visual review of the images demonstrated notable instances where the addition of the GC loss improved the vessel demarcation and anatomical accuracy of the resultant DSA images.

#### CONCLUSIONS

• The inclusion of a GC loss during training improves the ability of the algorithm to accurately demarcate the vasculature of interest when performing motion correction in DSA with a GAN.

## ACKNOWLEDGMENTS

We would like to thank the Alpha Omega Alpha Society, who supported this research through a Carolyn L. Kuckein Student Research Fellowship.

# Motion correction in digital subtraction angiography can be performed reliably using generative adversaria networks.





## **GRADIENT CONSISTENCY LOSS**

The gradient consistency loss is an implementation of the gradient correlation (GC), which is defined by the normalized cross correlation (NCC) between the gradients of two images. Given two images, A and B, the GC is defined as

GC(

where  $\nabla_x$  and  $\nabla_y$  are the gradient operators in the horizontal and vertical directions, respectively. The NCC(A, B) is defined as

N

where  $\overline{A}$  and  $\overline{B}$  represent the mean values of A and B, respectively. Using these equations, the gradient consistency loss  $L_{GC}$  can be defined as

where G is the generative model, x is the input image, z is a random noise vector, and y is the target image.



**Ground Truth** 

**Figure 1:** An example cerebral DSA generated using the traditional method (ground truth) (A), pix2pix without a gradient consistency (GC) loss (B), and pix2pix with a GC loss (C). As highlighted by the arrow outlines, the inclusion of a GC loss improved the ability of the GAN to accurately identify and demarcate the vasculature of interest.



**Traditional DSA Method** 

Figure 2: Example images from a hepatic case with significant motion artifacts, including a DSA image generated using the traditional method (Left) and a DSA image generated using the proposed GAN, showing successful suppression of misalignment artifacts (Right).



$$A,B) = \frac{1}{2} \{ NCC(\nabla_x A, \nabla_x B) + NCC(\nabla_y A, \nabla_y B) \}$$

$$CC(A,B) = \frac{\sum_{(i,j)} (A - \bar{A})(B - \bar{B})}{\sqrt{\sum_{(i,j)} (A - \bar{A})^2} \sqrt{\sum_{(i,j)} (B - \bar{B})^2}}$$

 $L_{GC}(G) = \mathbb{E}_{x,y,z}[1 - GC(y,G(x,z))]$ 





Without GC Loss

With GC Loss



**Proposed GAN Method**